Reactive Chemical Mechanical Polishing (RCMP) Process for Defect Free Sub-Surface DamageFree Polishing of SiC Mirrors

Rajiv Singh, Arul Arjunan, Deepika Singh Sinmat Inc

&

William Everson, Joe Randi EOC Pen State

Supported by DOD MDA SBIR Phase I/II HQ0006-10-7276
Phase I HQ0006-10-C-7341
Program Monitor: Lawrence Mattson

Mirror Tech Days June 22, 2011

Outline

- Introduction
 - Sinmat
 - SiC mirror
- Current Mirror Polishing
 - Current state of art
- Sinmat RCMP SiC Mirror Polishing Technology
- Polishing Results
- Conclusion

Sinmat

- University of Florida Spin-off
- Winner of four R&D 100 Awards 2004 & 2005, 2008, 2009
 - Top 100 most significant technologies of the year
- 12 licensed and 8 pending patents
- Employees: 23 and several consultants
- Leading global supplier of SiC CMP polishing technology to the semiconductor chip industry

Sinmat – Core Strengths

Slurries for Chip Manufacturing

CMP Polishing & Reclaim

Custom R&D Process Development

Planarization-Centric Device Technologies

Development of Novel Planarization Technologies

Polishing Technologies

- 1) Silicon Carbide
- 2) Sapphire
- 3) Other oxides such as Spinels
- 4) Nitrides such as GaN/AIN
- 5) Diamond

Mirror Materials

SiC has a better combined specific stiffness and thermal stability than other optical materials which are desired for mirrors

SiC Material Properties Creates Fabrication Challenges

- > SiC is very hard & chemically inert
- Grain highlighting
- Very Low Removal Rates
- Poor Long Term Process Stability-Recirculating Slurry Process
 - Dispersion of large diamond particles
 - Poor figure correction capability
- Poor Control of Polishing selectivity with other materials e.g Silicon

Current State of the Art: Mechanical Polishing

Uses Large Diamond Particles (250 nm – 5 micron)

Mechanical Process creates damaged sub-surface layer (20 nm – 1500 nm)

State of art Mirror Polishing results Scratches / Sub-

surface damage

Damage zone > 1 µm

Need for a <u>lower sub-surface damage Mechanical Polishing Process</u>

SiC Mirror Polishing Needs

Need to develop a faster, cheaper, better, robust & flexible CMP process to polish polycrystalline SiC Mirrors

Better

No scratches, atomically smooth; reduced sub-surface stresses and damage

Faster

>10X faster than current processes with fewer steps

Cheaper

- < 50% of current costs</p>
- Robust, Scalable to aspherical and larger size mirrors and current equipment
 - Ultra-stable Recyclable finishing process
- Tailoring of Polishing Selectivity with softer materials such as silicon

RCMP Process-Technical Approach

Technical Approach (Continued)

- > Particles used
 - Nano diamond (~5-10 nm)
 - Micro diamond (~100-250 nm)
 - Coated porous Silica particles
- Increase chemical activity of the diamond and silica with coating & surface modification
- Also enhancing the dispersion of diamond for recirculating CMP process

Functionalization of diamond

TEM of ultra nano diamond.

Sinmat's RCMP Mirror Technology Process

- Two step process
 - High Removal Rate (HRR) process
 - High Finish (HF) Process-
 - Both these slurries have excellent long term (tens of hrs) polishing rate stability for High precision process

Sinmat Polishing Process

- High Removal Rate (HRR) Process
 - Rapid polishing and shape correction
 - Reduce sub-surface damage
 - May have grain highlighting
- High Finish (HF) Process
 - Rapidly Achieve Angstrom level Smooth surfaces

Sinmat HRR Mirror Polishing Rate Comparison (Sinmat & EOC Penn State)

10 -20 x Increase in removal rates

Surface After HRR Polish Process Wyko (Sinmat)

As Received SiC mirror before Polish

Ra 250nm

Mirror: After Sinmat polish

Ra 5 nm

HRR Surface Finish: Zygo

CNC Ground

ZYGO New View data of CNC ground surface using a 400 grit tool

- >PV = 789 .9 nm
- >rms = 44.9 nm

After Sinmat HRR polish

ZYGO New View data of CNC ground surface using a 400 grit tool

Grain

- >PV = 146 nm
- ≻rms = 12 nm

Grain enhancement

Surface Morphology Improved HR Process- Zygo

Before Polish

>PV = 4244 .3 nm >rms = 273.8 nm **After Improved HR Polish**

- >PV = 213.8 Å
- ≻rms = 16.2 Å
- **≻**Grain highlighting is minimal

Surface After HRR Polish Process AFM

RMS 11nm
Grain Highlighting, low degree of surface scratches observed

HF Process Polishing Rate Comparison

2x to 3x higher removal rate

HF Process Wyko

Before Polish

After HF Polish

Ra 6 nm

Ra 1 nm

AFM Surface Finish HF Process

 5×5 Micron: $R_a = 2 \text{ Å}$

100 x 100 Micron: $R_a = 18 \text{ Å}$

RCMP Mirror Technology Applied to SiC Composite Material Systems

- The RCMP Technology can be used for other SiC systems (e,g Si/SiC composites)
- As RCMP is a chemically enhanced process the polishing rate selectivity between Si and SiC can be tailored
- Selectivity = Polishing Rate of SiC/Polishing Rate of Si
- > Selectivity varied from approx 10 to 0.3 by controlling chemistry and particle characteristics

Conclusion

Two step RCMP process ie., HRR & HF process for polishing/finishing and figure correction of SiC mirrors has been developed

- ➤ High polish rates: upto 16X higher than base diamond particles has been achieved
- Excellent surface finish
- Low sub-surface damage
- > High Process stability (Recirculating CMP process)
- Can be easily adopted with existing Equipment
- > Substantially Reduced manufacturing cost/times

Current/Future Plans

- Further Optimization of RCMP process with Penn State
 - Fabrication of aspheric mirror
- Evaluation RCMP for other SiC systems (e.g Si/SiC)
- Work with polishing houses to integrate the RCMP technology into their process